Sea Ice Monitoring


Sea ice is both an oceanographic and a meteorological feature. Satellites are almost the only convenient way to monitor ice accumulations in the polar regions. Satellites with high resolution sensors can also detect icebergs. Generally, any spectral band in the visible is suited to spotting ice but thermal imagery and radar (especially at night) also will find it. Some examples of what can be seen from space substantiate the utility of satellites for picking out ice distribution - of vital concern to those who must travel in shipping lanes where passage may be impossible or where dangers lurk. (The big “what might have been” question: could satellite observations have saved the Titanic?)


Sea Ice Monitoring


Our final look at satellite use in oceanographic monitoring concerns sea ice, which normally occurs year round in the polar regions but to varying extents. Polar orbiting satellites repeatedly pass near the poles on a daily cycle. Visible and radar imagery is effective in observing sea ice on a continual basis. Radar at bands that penetrate clouds (e.g., L-band) is now operational (Canada’s Radarsat, for example) to monitor shipping lanes subject to ice hazards. Below is a SIR-C multiband color composite that shows ice in the Weddell Sea, off Antarctica, south of the Atlantic Ocean. Open water, called polynas, shows as darker tones.

Multiband color composite SIR-C image of ice in the Weddell Sea off of the Antarctic south of the Atlantic Ocean.

` <>`__14-36: Why does this ice show a blocky or patchwork pattern? **ANSWER**

Sea ice may retreat during the summer but reform in new patterns as winter ensues, as shown in this Landsat image off the Greenland coast:

Developing Sea Ice off the coast of Greenland.

As the ice forms seasonally, the growing pack can take on swirl patterns caused by eddy-current circulation, as seen in this SIR-C image:

Colorized SIR-C image of a growing ice pack.

` <>`__14-37: Which way are the ice eddies swirling? **ANSWER**

We see the nature of ice packs in the Arctic, over a large area, in this HCMM-Visible image of the Chukchi Sea in the Bering Strait between Alaska and Siberia. The ice in this scene has a network of cracks, called leads, which open during summer breakup and refreeze when conditions demand.

HCMM Vis image of the Chukchi Sea in the Bering Straight.

Sea ice distribution over a large region is effectively being monitored now by the MODIS sensor on Terra (see Section 16). Here is a view of ice passing through, and blocking, the Bering Strait between Siberia and western Alaska.

MODIS (on Terra) visible image of ice streaming through the Bering Strait into the Bering Sea.

The polar regions of the Northern Hemisphere are covered by sea ice, ice caps or sheets (e.g., Greenland) and snow, as depicted by this composite image constructed from Radarsat SAR images:

The snow and ice caps covering both land and sea in the Northern Hemisphere.

Below is another view of the north polar regions, showing the prevailing ice cover, made by NSCAT (the NASA Scatterometer).

NSCAT image showing the prevailing ice cover of the north polar regions.

Next, we show the growth and shrinkage of the ice fields surrounding Antarctica as sensed by ESMR that appeared earlier in this section. Below these images are SMRR images that show changes in the ice cover for four years, during the 1978-86 period, in the top diagram.

Time series maps depicting the percentage of ice cover around Antarctica on a monthly basis in 1974, taken by the ESMR on Nimbus-5.

` <>`__14-38: In the lower of these two diagrams above, why is ice minimal in December? In the upper diagram, what is ice-covered besides the Arctic Ocean? **ANSWER**

The ice shelf surrounding the Antarctic continent extends sometimes 100s of kilometers from shore. Periodically parts of its edge will break loose and float free in the southern ocean. In 1995 a large (greater than Rhode Island in size) raft of ice, assigned the identifier B10, separated and starting moving north. It later broke again into two sections. Small pieces continue to break off (calve) as icebergs. Here is a Landsat image of B10A showing the sheet and its offspring ‘bergs:

Icebergs moving away from the floating ice sheet B10A, off Antarctica.

In early 2002, another great slab of ice from the Larsen ice shelf, between the Bellingshausen and Wendell seas, broke off and is now cruising the sea off Antarctica. Here is a scene during this rupture stage, imaged by the ASAR radar on the Envisat (see Overview) launched in February 2002.

Shelf ice becoming slablike icebergs, at the edge of Antartica.

While some changes in sea ice (and ice cap) cover, both in area and thickness, may be progressing towards lower overall areal extent because of natural/man-induced global warming, there are as well normal seasonal fluctuations. Here are two sets of images made by the AMSR-E sensor on Aqua (page 16-11) of Arctic sea ice and Antarctic shelf ice during two periods in 2002 between June and July:

Polar ice cover in early June, 2002

Polar ice cover in late July, 2002

In the northern hemisphere, the ice shrinks in extent as the summer progresses. But in the southern hemisphere, where it is winter at this time of the year, the ice shelf around the Antarctic increases.

In the U.S., winter ice on the Great Lakes becomes a major impediment to shipping and usually some or all of the lakes close to normal travel. The AVHRR on NOAA satellites daily monitors the status of ice cover , giving results like this thermal IR image, made on January 31, 1996 (ice is light-toned; clouds appear very dark):

NOAA AVHRR of ice having developed sheets covering much of the Great Lakes.


Primary Author: Nicholas M. Short, Sr. email: nmshort@nationi.net